
OSS-Fuzz
Google's continuous fuzzing service for

open source software

Kostya Serebryany <kcc@google.com>
USENIX Security 2017

1

mailto:kcc@google.com

Agenda

● Fuzzing-related archeology (paleontology?)

● libFuzzer demo

● OSS-Fuzz - continuous fuzzing service

2

Testing vs Fuzzing

 MyApi(Input1);

 MyApi(Input2);

 MyApi(Input3);

while (true)

MyApi(GenerateInput());

Coverage-guided fuzzing

● Acquire the initial corpus of inputs for your API
● while (true)

○ Randomly mutate one input
○ Feed the new input to your API
○ new code coverage => add the input to the corpus

4

Coverage-guided fuzzing is not new
● Bunny-the-fuzzer (2007)
● “Automated Whitebox Fuzz Testing” (aka “SAGE”, 2008)
● …

● 2013-11-14 “[asan] Poor man's coverage that works with ASan”
○ Used internally by the Google Security team
○ 2014/01/ffmpeg-and-thousand-fixes.html (and the following 500+ bugs)

● 2013-11-12: AFL released

● 2014-11-14: first bug found by libFuzzer (released: 2015-01-27)

5

http://llvm.org/viewvc/llvm-project?view=revision&revision=194701
http://googleonlinesecurity.blogspot.com/2014/01/ffmpeg-and-thousand-fixes.html
http://lcamtuf.coredump.cx/afl/
http://libfuzzer.info

Yet, the Heartbleed
● 2011-12-31: Introduced into OpenSSL

● ʮ

● 2014-03: Found independently by
○ Google's Neel Mehta: code audit
○ Codenomicon: specialized fuzzer

● 2015-04-07 (Hanno Böck):
○ AFL (out-of-process): 6 hours

● 2015-04-09 (Kostya Serebryany):
○ libFuzzer (in-process): 10 seconds 6

https://en.wikipedia.org/wiki/Heartbleed
https://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=4817504d069b4c5082161b02a22116ad75f822b1
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
http://blog.llvm.org/2015/04/fuzz-all-clangs.html

Why did Heartbleed exist for 2 years?

● OpenSSL not funded well?

● Fuzzing tools not widely available?

● Fuzzing done by security researchers, not by code
owners

7

Why didn’t OpenSSL team fuzz until 2016?

● OpenSSL not funded well?

● Fuzzing tools not widely known (poorly documented, etc)?

● No infrastructure to automate continuous fuzzing!

8

https://github.com/openssl/openssl/commit/c38bb72797916f2a0ab9906aad29162ca8d53546

Experimental fuzzing “service” (2015)

● 100-line bash script to automate fuzzing

● OpenSSL, BoringSSL, PCRE2, FreeType, LibXML, HarfBuzz

● One 8-core VM per project, running for 24/7

● Found bugs in every project, decided to make it bigger!

9

Fuzzing as a Service
● 2016-12-01: OSS-Fuzz launched publicly

○ Collaboration between Chrome Security, Open Source, and Dynamic Tools teams

● Continuous automated fuzzing on Google’s VMs

● Uses libFuzzer and AFL, more fuzzing engines in pipeline
○ Also uses ASan/MSan/UBSan to catch bugs

● Available to important OSS projects for free
○ The project needs to have a large user base and/or be critical to Global IT infrastructure, a general heuristic

that we are intentionally leaving open to interpretation at this stage (*)

● Same infrastructure is used to fuzz Chrome since 2015
10

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/README.md

Detour: libFuzzer and Fuzz Targets

11

libFuzzer
bool FuzzMe(const uint8_t *Data, size_t DataSize) { // fuzz_me.cc

 return DataSize >= 3 &&

 Data[0] == 'F' &&

 Data[1] == 'U' &&

 Data[2] == 'Z' &&

 Data[3] == 'Z'; // :‑<

}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

 FuzzMe(Data, Size);

 return 0;

}

% clang -g -fsanitize=address,fuzzer fuzz_me.cc && ./a.out

Requires fresh clang 12

Fuzz Target
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

DoStuffWithYourAPI(Data, Size);

return 0;

}

● Consumes any data: {abort,exit,crash,assert,timeout,OOM} == bug

● Single-process

● Deterministic (need randomness? Use part of the input data as RNG seed)

● Does not modify global state (preferably)

● The narrower the better (fuzz small APIs, not the entire application)

13

libFuzzer demo

tutorial.libFuzzer.info

14

http://tutorial.libfuzzer.info

Back to OSS-Fuzz

15

2000+ bugs

16

https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=status%3AFixed%2CVerified+Type%3ABug%2CBug-Security+-component%3AInfra+

In 60+ OSS projects (showing top 30)

17

https://github.com/google/oss-fuzz/tree/master/projects

Example: Wireshark (~50 bugs)

Wireshark mailing list:
>> Timeouts. These are more severe as it causes a denial of service due to "infinite" loops 18

https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=status%3AFixed%2CVerified+Type%3ABug%2CBug-Security+-component%3AInfra+proj-wireshark&colspec=ID+Type+Component+Status+Proj+Reported+Owner+Summary&cells=ids
http://seclists.org/wireshark/2017/May/9

Ideal integration with OSS-Fuzz
● Every fuzz target:

○ Is maintained by code owners in their RCS (Git, SVN, etc)
○ Is built with the rest of the tests - no bit rot!
○ Has a seed corpus with good code coverage
○ Is continuously tested on the seed corpus with ASan/UBSan/MSan
○ Is fast and has no OOMs
○ Has fuzzing dictionary, if applicable

● Projects don’t have to have their own continuous fuzzing
○ But are welcome to!

19

https://github.com/google/oss-fuzz/blob/master/docs/ideal_integration.md
http://llvm.org/docs/LibFuzzer.html#dictionaries

Life of a
● The bot detects a bug and deduplicates it against other known bugs
● Reproducer input is minimized, “regression revision range” identified
● Private issue is reported with project owners in CC
● Owners fix the bug

○ Recommended: the reproducer is added to the seed corpus for regression testing

● (every 24 hours) the bot reruns on fresh trunk
○ If the bug is fixed, identifies “fixed revision range” and closes the bug

● The bug is made public:
○ 30 days after the fix or
○ 90 days after reporting (whichever is earlier)

20

Report example (automatically filed)

21

Fuzzer statistics

22

Coverage report

23

How to participate in OSS-Fuzz

● Be an important OSS project (examples)

● Send a pull request to https://github.com/google/oss-fuzz
○ project.yaml - project information and maintainer e-mails (example)
○ Dockerfile - set up the build environment (example)
○ build.sh - build the fuzz targets (example)

● Improve over time
○ Fix bugs (including timeouts/OOMs)
○ Monitor coverage and extend seed corpus

24

https://github.com/google/oss-fuzz/tree/master/projects
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz/blob/master/projects/openssl/project.yaml
https://github.com/google/oss-fuzz/blob/master/projects/openssl/Dockerfile
https://github.com/google/oss-fuzz/blob/master/projects/openthread/build.sh

Google’s Patch Reward Program (for OSS-Fuzz)

● $1,000 for initial integration with OSS-Fuzz
● Up to 20,000 for ideal integration

● Why are we doing this?
○ To make Google’s code safer (we use lots of OSS)
○ To make Internet safer (no more Heartbleeds, please!)
○ To popularize continuous fuzzing

25

https://www.google.com/about/appsecurity/patch-rewards/

Fuzz-Driven Development

● Kent Beck @ 2003 (?): Test-Driven Development
○ Great & useful approach (still, not used everywhere)
○ Drastically insufficient for security

● Kostya Serebryany @ 2017: Fuzz-Driven Development:
○ Every API is a Fuzz Target
○ Tests == “Seed” Corpus for fuzzing
○ Continuous Integration (CI) includes Continuous Fuzzing
○ Equally applicable to “safer” languages, see e.g. rust-fuzz, go-fuzz

26

https://en.wikipedia.org/wiki/Test-driven_development
https://github.com/rust-fuzz/trophy-case
https://github.com/dvyukov/go-fuzz

Summary

● Coverage-guided fuzzing is easy

● Fuzzing must be
○ Continuous & Automated
○ Maintained by code owners

● OSS-Fuzz - a public fuzzing service for OSS
○ Goal: make common software infrastructure more secure by applying

modern fuzzing techniques at large scale.
○ 2000+ bugs reported since Dec 2016, most fixed.

27

Q&A

https://github.com/google/oss-fuzz

28

https://github.com/google/oss-fuzz

